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Collapsing cavities, toroidal bubbles
and jet impact

B y J. R. Blake, M. C. Hooton, P. B. Robinson and R. P. Tong
School of Mathematics and Statistics, The University of Birmingham,

Edgbaston, Birmingham B15 2TT, UK

The present study is aimed at clarifying some of the factors which affect the forma-
tion and direction of a liquid jet in a collapsing cavity and the pressures induced
on a nearby rigid boundary. The flow can be accurately represented by a velocity
potential leading to the use of boundary integral methods to compute bubble col-
lapse. For configurations with axial symmetry, the jet motion and that of the bubble
centroid are along the axis of symmetry. Examples are presented for bubbles close to
a rigid surface and to a free surface. These are followed through to the toroidal stage
after jet penetration. When there is no axis of symmetry, fully three-dimensional
computations show that the buoyancy force can cause the jet to move parallel to a
vertical rigid boundary, thus negating its damaging effect. The computational study
is extended to model cavitation bubble growth and collapse phases in a forward stag-
nation point flow as a model of reattachment of a boundary layer; a region where
severe cavitation damage is often observed. The Kelvin impulse is introduced to aid
a better understanding of the mechanics of bubble migration and jet direction in the
examples presented. Finally a comparison between the spherical and axisymmetric
theories is made for an oscillating bubble in a periodic pressure field; this being of
particular interest to current studies in acoustic cavitation and sonoluminescence.

1. Introduction

One of the main mechanisms for damage to hydraulic structures by cavitation, or
to naval structures by an underwater explosion, is the violent collapse phase of the
bubble. A high speed liquid jet often penetrates the bubble and its impact can induce
a large pressure loading on a nearby structure. However, in the case of cavitation,
only a small number of bubbles present in the flow are responsible for damage to
a surface, while for an underwater explosion the damage caused is also difficult to
predict.

The size of bubbles considered in the present study ranges from as little as 10 µm in
radius for some cavitation bubbles, to 10 m and more for underwater explosions. For
the purposes of experimental observation bubble sizes of 2–3 cm in a reduced pressure
environment are often generated (Blake & Gibson 1981, 1987). The period of bubble
oscillation varies from microseconds to seconds; for example, an underwater explosion
with a maximum bubble radius of 10 m has a period of the order of one second. The
fluid motions associated with these rapid bubble oscillations (surface velocities can
be as large as 103 m s−1) generate very large pressures in the surrounding fluid, from
102–103 times atmospheric pressure. In addition shock waves are common when the
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bubble volume is a minimum (either at its inception, or at the end of each oscillation
period) and these can give rise to short-lived pressures greater than 103 atm. Forcing
of bubble oscillations by an ultra-sound device can produce temperatures in the
bubble contents from order 102 K to estimated values of 106 K (Crum 1995; Moss et
al. 1994). The study of bubble dynamics thus provides many examples of extreme
free surface motions.

The present paper is organized into the following sections. Section 2 outlines the
results of numerical simulations using the boundary integral method for both axisym-
metric and fully three-dimensional geometries. Section 3 examines the behaviour of
a cavitation bubble in a stagnation point flow, modelling the reattachment of a
boundary layer. An analytic framework is provided for the numerical and experi-
mental results in §4 by the Kelvin impulse theory, §5 reports on the excitation of
bubble motion by an acoustic field, while §6 places the current study in perspective
with regard to realistic, practical problems in transient bubble dynamics.

2. Boundary integral methods

For many transient bubble motions the viscosity of the liquid (commonly water)
and the effect of surface tension are negligible. In these cases the liquid can be consid-
ered to be ideal and irrotational so that its motion is described by a velocity potential
φ(x, t) which satisfies Laplace’s equation in the liquid. With these assumptions, the
boundary integral method provides an efficient means of computing the evolution of
a bubble surface in time, including the interaction of a bubble with a rigid boundary
or a free surface. The solution procedure involves only a discretization of the bound-
aries, ∂Ω , of a fluid domain Ω . Given the initial conditions of the position of any
free surfaces and rigid boundaries, together with the values of φ on the free surfaces
and ∂φ/∂n on the rigid boundaries, Laplace’s equation is solved in integral form as

1
2φ(p) =

∫
∂Ω

(
∂φ

∂n
(q)G(p, q)− φ(q)

∂G

∂n
(p, q)

)
dΩq, (2.1)

to give ∂φ/∂n on the free surfaces, where p, q ∈ ∂Ω , assumed smooth and

G(p, q) = 1/(4π|p− q|).
The normal direction is taken to be outward (i.e. into the bubble). This leads to the
construction of the free surface velocities which are used to advance these surfaces
forward in time by means of the kinematic and dynamic boundary conditions

dx
dt

= ∇φ, x ∈ Sb, (2.2)

dφ
dt

=
1
2
|∇φ|2 − α

(
V0

V

)λ
− δ2(z − z0) +

κ

We
+ 1, (2.3)

where Sb is the bubble surface. Here, d/dt denotes the material derivative and Carte-
sian coordinates are chosen such that gravity acts in the negative z-direction.

Non-dimensional parameters are used with length scaled with respect to the max-
imum bubble radius Rm, time with respect to Rm(ρ/∆p)1/2. The pressure scale is
∆p = p∞ − pc and pc is the liquid vapour pressure (taken to be constant), with
p∞ the hydrostatic pressure at the depth of bubble inception, z0. In the case of two
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Figure 1. (a) The location of the point of bubble inception. (b) A cut is introduced at the point
of impact, I, in order to continue to the toroidal phase. (c) An arbitrary cut, T , is introduced
at each time step for the toroidal bubble.

bubbles, Rm is taken to be the maxium radius attained by the larger bubble. Expan-
sion or compression of any non-condensible gas inside the bubble is assumed to be
adiabatic and λ is the ratio of specific heats, with V the bubble volume and V0 the
initial volume at t = 0. Surface tension effects can be included and κ is the sum of
the principal curvatures of the bubble surface. For an infinite free surface bounding
the fluid domain, the pressure is taken to be constant on this surface and is set to
zero. The significant dimensionless parameters are the bubble standoff from any rigid
boundary (γ), buoyancy (δ), the pressure due to any non-condensible contents of the
bubble (α) and the Weber number (We), with

γ =
h

Rm
, δ =

(
ρgRm

∆p

)1/2

, α =
p0

∆p
, We =

Rm∆p
σ

,

where σ is the surface tension, h is the distance of the point of bubble inception from
the nearest rigid boundary (see figure 1a) and p0 is the initial pressure due to any
non-condensible bubble contents.

Information on aspects of the computation relating to the numerical methods
associated with solving (2.1) can be found in Blake et al. (1986, 1987), Og̃uz &
Prosperetti (1990) and Best (1993). In some cases it was necessary to smooth the
surface shape by exploiting the formula developed by Longuet-Higgins & Cokelet
(1976) in connection with their study of water waves.

In figure 2 calculations based on the axisymmetric version of the code are il-
lustrated for a cavitation bubble near a rigid boundary (figure 2a), a free surface
(figure 2b) and for two bubbles near either a rigid boundary (figure 2c), or a free
surface (figure 2d). Figure 2a shows the particle paths of a number of particles from
initiation until ‘touchdown’ of the high speed liquid jet. It is of particular interest to
note the near parallel particle pathlines of the jet. In figure 2b it can be observed that
the liquid jet is directed away from the free surface (in contrast to the rigid boundary
where the jet is directed towards the boundary). The other notable feature is the free
surface ‘spike’ which moves vertically at a near constant velocity. Longuet-Higgins
(1983) has analysed the local flow near the tip as a Dirichlet hyperboloid, obtaining
‘spike’ velocities in excellent agreement with the experimental studies reported in
Blake & Gibson (1981). In figure 2c it is observed that the lower bubble collapses
from the side. The upper bubble plays the role of an ‘image bubble,’ thus creating
an effective rigid wall, hence the collapse from the side as if it is located in a channel
between two plates (see, for example, Chahine 1982). In figure 2d the lower bubble
does not influence the upper bubble significantly.

After jet impact a toroidal bubble is formed and the liquid domain is no longer
simply connected. Connectivity of the computational domain is restored by means
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Figure 2. Vapour bubbles, α = 0. (a) The particle paths during growth and collapse for a bubble
below a rigid boundary, γ = 1.0, δ = 0. (b) The collapse of a single bubble near a free surface.
(c) The collapse of two different sized bubbles above a rigid boundary. (d) The collapse of two
bubbles beneath a free surface.

of a cut (see figure 1b, c) and the integral equation now includes an additional term:

1
2φ(p) =

∫
∂Ω

(
∂φ

∂n
(q)G(p, q)− φ(q)

∂G

∂n
(p, q)

)
dΩq −∆φ

∫
T

(
∂G

∂n+
(p, q)

)
dΩq.

(2.4)
Integration over T , the surface of the cut, takes account of any circulation introduced
at the jet impact by allowing a jump in φ values, with ∆φ = φ+ − φ− where the
subscripts ± identify the upper and lower sides of T . A detailed theoretical analysis
of the jet impact process is given in Best (1993). The central concept of the theory
depends on impact at a point with no resulting generation of a vortex sheet. This
is consistent with the original mathematical model which does not allow any energy
loss, since there is no mechanism for this in the model. A later approach by Zhang
et al. (1993) extends the approach of Best to incorporate a vortex sheet.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Collapsing cavities 541

0.0

–0.5

–1.0

0.0

–0.5

–1.0

–1.0 0.0 1.0

z
z

r
–1.0 0.0 1.0

r

(a) (b)

(c) (d)

Figure 3. The formation of a toroidal bubble after jet impact for γ = 1.0.

Figure 3 shows the development of the toroidal bubble for γ = 1 and times 2.26
through to 2.43. Figure 4a plots the centreline pressures as a function of time for
this case. Two high local peak pressures are predicted, the earlier one associated
with jet impact, while the marginally later one coincides with the large internal
pressures inside the bubble at minimum volume. However, this picture is incomplete,
since if we examine figure 4b, it is observed that while the peak pressure at the
instant of jet impact is on the centreline there are higher pressures off-axis. These
are a combination of the pressures associated with the bubble minimum volume
and the high speed lateral fluid motion which yields the characteristic ‘slamming’
pressures. Recent calculations by King & Needham (1994) suggest that the boundary
integral code will need to be modified to take account of the singular behaviour of
the potential during this part of the impact process.

The discussion to date has concentrated on the simpler axisymmetric studies.
However, the practical problems that have motivated these studies (cavitation and
underwater explosions) require a comprehensive three-dimensional study, for which
computational details are given in Blake et al. (1995). In figure 5, the role of buoyancy
is explored by increasing the parameter δ. It is clear that buoyancy can mitigate the
Bjerknes boundary attraction for larger values of δ, causing the jet to move in a more
vertical direction.

3. Stagnation point flow

The flow over an elongated body is relevant to applications in hydraulic machinery.
The stagnation zone associated with the reattachment of a separated flow is identified
by Knapp (1955) as the location of the most severe cavitation damage on the body
surface. However, Knapp estimates that only one bubble in 30 000 is likely to cause
damage. Bubble inception occurs in the low pressure region near the blunt nose of
the body and bubbles are swept over the separated region to the higher pressure
region near reattachment, where they collapse causing large fluid velocities and high
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Figure 4. Non-dimensional pressure at the rigid boundary during bubble collapse: (a) on the
axis of symmetry (pressure against time), the vertical broken lines show the time of jet im-
pact followed by the time of minimum volume; (b) along the boundary (pressure against radial
distance).

pressures. This results in noise as well as damage to the nearby boundaries due to a
number of factors which include collective bubble phenomena, shocks and high speed
liquid jets impacting directly onto the boundary (see, for example, Brennen 1995).
To investigate this last aspect, Starrett (1982) conducted a series of experiments
on the collapse of cavitation bubbles in an axisymmetric stagnation point flow. The
parameters of these experiments are used to provide initial conditions for the present
theoretical results.

An ideal stagnation point flow along the z-axis is assumed, defined by the velocity
potential

φs = 1
4β
(
x2 + y2 − 2z2) . (3.1)

By introducing a modified velocity potential

φ(x, t) = φb(x, t) + φs(x), (3.2)

the boundary integral formulation already described can be introduced to solve for
φb, the perturbation to the stagnation point flow caused by the bubble. The pressure
scale now becomes,

∆p = pu − pc, (3.3)
where, pu is the pressure in the undisturbed flow at the point of bubble inception,

pu = ps − 1
2β

2γ2, (3.4)

with ps, the pressure at the stagnation point.
As defined earlier, γ is the non-dimensional distance of the inception point of the

bubble from the stagnation point on the rigid boundary. This gives, for a cavitation
bubble in the absence of gravity and ignoring surface tension effects, the dynamic
boundary condition on the bubble surface,

dφ
dt

= 1
2 |∇φ|2 + 1

2β
2γ2 + 1. (3.5)

An approximate initial condition is used to start the computation by adding to the
stagnation flow potential that due to a Rayleigh bubble of small radius.
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(a)

(b)

(c)

Figure 5. The expansion and collapse of an explosion bubble near a vertical wall for γ = 2.0,
showing the effect of increasing the buoyancy parameter δ: (a) δ = 0; (b) δ = 0.1; (c) δ = 0.2.

In figure 6a computational results are shown for the collapse phase of an example
from Starrett’s experiments corresponding to a free stream velocity of 6.9 m s−1. It
is observed that a circumferential jet develops in this case leading to the formation
of two bubbles and two ultrafine high speed jets. The continuation of this type of
collapse is illustrated in figure 6b for the case of an initially perturbed bubble. It is
unlikely that these ultrafine jets would be damaging to the rigid boundary. However,
in figure 6c, a slower stagnation flow is used resulting in a small ‘hump’ appearing at
the top of the bubble, which leads to an extremely fast, fine jet directed against the
boundary. This aspect of the study could not be recorded by the high speed cameras
(Robinson & Blake 1994).

4. Kelvin impulse

The Kelvin impulse, which was applied to bubble dynamics by Benjamin & Ellis
(1966), provides a useful theoretical framework for interpreting the interaction of
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Figure 6. (a) Collapse of a vapour bubble in a stagnation point flow for γ = 2.31, β = 0.126. (b)
The ultra high speed jets that form during the collapse of a perturbed spherical bubble after
it divides into two. (c) Collapse of a vapour bubble in a stagnation point flow for γ = 0.87,
β = 0.09.

a bubble with a rigid boundary, a free surface, or in a stagnation point flow. The
Kelvin impulse (scaled by R3

m(ρ∆p)1/2) is defined as

I =
∫
Sb

φn dS, (4.1)

where Sb is the surface of the bubble. The rate of change of the Kelvin impulse
can be written in terms of a force component FΣ due to the Bjerknes effect of the
boundary and a buoyancy force F g (Blake & Cerone 1982),

dI
dt

= FΣ + F g. (4.2)

where,

FΣ = −
∫
Sb

{
1
2
|∇φ|2n− ∂φ

∂n
∇φ
}

dS, (4.3)
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and

F g = δ2V ez, (4.4)

ez being a unit vector in the positive z-direction and V the bubble volume. These
expressions can be derived (Newman 1977) by using the fact that the hydrodynamic
force, Fh, on the bubble is zero, with

Fh =
∫
Sb

pn dS = −dI
dt
−
∫
Sb

{
1
2
|∇φ|2n− ∂φ

∂n
∇φ
}

dS + δ2V ez. (4.5)

The Kelvin impulse can be approximated using a multipole expansion for the poten-
tial due to the bubble and including the effects of any boundaries or ambient flow
field (Blake 1988; Best & Blake 1994). It can then be used to predict the direction
of bubble migration and jet penetration for a buoyant collapsing bubble near a rigid
boundary or free surface in many cases, as indicated below.

In figure 7a, b, c computational predictions and experimental observations (free
surface only) of the direction of final bubble migration and subsequent jet formation
are shown for a range of values of the ‘stand-off’ parameter γ and the buoyancy
parameter δ: in (a) for a rigid boundary (Best & Blake 1992); in (b) for a free surface
(Blake et al. 1987); in (c) for a stagnation point flow where β corresponds to the
dimensionless strength of the flow (Robinson & Blake 1994). In each of these cases
there are opposing effects acting on the bubble motion: in (a) the upward buoyancy
force opposes the downwards Bjerknes attraction towards the rigid boundary; in (b)
the upward buoyancy force opposes the repulsive, downward directed, free surface
Bjerknes force; and in (c) the ‘effective buoyancy’ term associated with the high
stagnation pressure opposes the Bjerknes attraction towards the rigid boundary.
The two curves in each of frames (a) and (c) of figure 7, correspond to two different
methods used to calculate the null impulse line for the Kelvin impulse at the end of
the first collapse: (i) a fixed spherical bubble model against (ii) a spherical bubble
free to translate along the centreline. The key feature is the remarkable accuracy with
which the simple idea of the Kelvin impulse can predict the direction of migration of
nearly axisymmetric bubbles. However, when we move to the fully three-dimensional
situation, the picture is not quite so promising. Figure 7d shows the bubble shapes
for γ = 1.2, δ = 0.2, α = 10, λ = 1.4, while figure 7e gives the motion of the bubble
centroid (continuous line) and the direction and magnitude of the Kelvin impulse.
While there is some error in defining the actual jet tip, we find that variations
between the jet direction and the Kelvin impulse vector can be as high as 10%.
Further investigation of this aspect is being carried out (Blake & Tong 1995).

5. Acoustic cavitation

The irradiation of a liquid containing small bubbles by an acoustic field can result
in the transformation of the low energy density of the acoustic waves into the very
high energy density of the pulsating bubbles. When the wavelength of the acoustic
pressure disturbance is much longer than the dimensions of the bubble, this phe-
nomenon can be modelled using the formulation of the present discussion by defining
the far field pressure in the liquid to be

p∞ = ph + pa cos Ωt. (5.1)
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Figure 7. The null impulse curve for axisymmetric buoyant vapour bubbles (α = 0): (a) above a
rigid plane boundary (the direction of the arrow or triangle denotes the direction of jet formation
computed by the boundary integral method); (b) beneath a free surface; (c) in a stagnation point
flow, (—) fixed spherical bubble, (– –) translating spherical bubble.

Spherically symmetric pulsations in this context can be described by the Rayleigh–
Plesset equation,

R
d2R

dt2
+

3
2

(
dR
dt

)2

= α

(
1
R

)3λ

− ε cos Ωt− 1− 2
We

1
R
, (5.2)

where the pressure scale is now ∆p = ph − pc and the length scale is Rm = 2σ/∆p
so that ε = pa/∆p with α = p0/∆p. This equation can be integrated numerically to
any desired accuracy and it thus provides a useful comparison with the axisymmet-
ric boundary integral computations of the same problem. The dynamic boundary
condition for time stepping the bubble surface is modified to include the pulsating
far field pressure:

dφ
dt

= 1
2 |∇φ|2 + 1 + ε cos Ωt− α

(
V0

V

)λ
+

κ

We
. (5.3)
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Figure 7. (d) Explosion bubble for γ = 1.2, δ = 0.2, α = 10, λ = 1.4. (e) The Kelvin impulse
vectors for (d) related to the centroid motion (—).

In figure 8a, a comparison is made between the radius obtained from the Rayleigh–
Plesset equation against that obtained from the volume of the axisymmetric bubble.
The comparison up to t = 30 is excellent. However, if we plot out the bubble shape
for t > 30 (figure 8b), it is observed that the bubble begins to develop an inward
jet around the equator. This is probably due to a small numerical error developing
with time in the code. Other studies where small non-dimensional perturbations of
O(10−4) are introduced and which use lower order spherical harmonics produce the
expected characteristic shapes (Shaw 1994). Certainly experimental observations in
Göttingen (Hentschel 1984) confirm that this behaviour can exist.
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Figure 8. (a) Comparison between the radius-time curve calculated numerically by the boundary
integral method (o) and the Rayleigh–Plesset equation (—). The corresponding parameters are
given by Ω = 524 kHz, ∆p = 1 atm, pa = 0.333 atm, p0 = 0.6 atm and We = 35. (b) The bubble
oscillations for t > 30, being the continuation of the boundary integral computation.

6. Conclusions

Considerable progress has been made over the last decade in our basic under-
standing of cavitation bubble collapse, the development of high speed liquid jets and
the pressures associated with jet impact. Some of these developments are presented
here. However, the theoretical studies to date are still highly idealized; either re-
stricted to axisymmetric studies, or in rather special flow fields. Real problems often
involve complicated flow behaviour (separation, tip vortices, turbulence) and three-
dimensional geometries. However, the basic physical understanding that is beginning
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to emerge from the simpler examples will provide insight into the more complicated
real problems.
The research reported in this paper has been financially supported by the Australian Research
Council, SERC, EPSRC and DRA Dunfermline and Fort Halstead.
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